Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676449

RESUMEN

The leakage behavior of ferroelectric film has an important effect on energy storage characteristics. Understanding and controlling the leakage mechanism of ferroelectric film at different temperatures can effectively improve its wide-temperature storage performance. Here, the structures of a 1 mol% SiO2-doped BaZr0.35Ti0.65O3 (BZTS) layer sandwiched between two undoped BaZr0.35Ti0.65O3 (BZT35) layers was demonstrated, and the leakage mechanism was analyzed compared with BZT35 and BZTS single-layer film. It was found that interface-limited conduction of Schottky (S) emission and the Fowler-Nordheim (F-N) tunneling existing in BZT35 and BZTS films under high temperature and a high electric field are the main source of the increase of leakage current and the decrease of energy storage efficiency at high temperature. Only an ohmic conductive mechanism exists in the whole temperature range of BZT35/BZTS/BZT35(1:1:1) sandwich structure films, indicating that sandwich multilayer films can effectively simulate the occurrence of interface-limited conductive mechanisms and mention the energy storage characteristics under high temperature.

2.
Small ; 18(9): e2105780, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34918456

RESUMEN

With the development of miniaturization, lightweight and integration of electronic devices, the demand for high-temperature dielectric capacitors is becoming urgent. Nevertheless, the breakdown strength and polarization are deteriorated at high temperatures due to the thermal energy assisting the electron transport and impeding the dipole alignment. Here, a structure of capacitor with double gradients of dielectric constant gradient and strain gradient is designed to achieve high breakdown strength, high working temperature, and high energy storage density simultaneously. It is found that the designed structure of BaHf0.17 Ti0.83 O3 /1mol% SiO2 doped BaZr0.35 Ti0.65 O3 /0.85BaTiO3 -0.15Bi(Mg0.5 Zr0.5 )O3 exhibits excellent energy storage performance. The energy storage density of 127.3 J cm-3 with an energy storage efficiency of 79.6% is realized in the up-sequence multilayer with period N = 2 at room temperature. Moreover, when the working temperature varies from -100 to 200 °C, the energy storage density of the N = 4 capacitor keeps stably at 84.62 J cm-3 with an energy storage efficiency 78.42% at 6.86 MV cm-1 . All these properties promise great potential applications of the designed multilayer capacitors with the double gradients in harsh environments, and the design principle can be applicable to other systems to boost working temperature.

3.
Nat Commun ; 12(1): 5322, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493734

RESUMEN

Phase transition describes a mutational behavior of matter states at a critical transition temperature or external field. Despite the phase-transition orders are well sorted by classic thermodynamic theory, ambiguous situations interposed between the first- and second-order transitions were exposed one after another. Here, we report discovery of phase-transition frustration near a tricritical composition point in ferroelectric Pb(Zr1-xTix)O3. Our multi-scale transmission electron microscopy characterization reveals a number of geometrically frustrated microstructure features such as self-assembled hierarchical domain structure, degeneracy of mesoscale domain tetragonality and decoupled polarization-strain relationship. Associated with deviation from the classic mean-field theory, dielectric critical exponent anomalies and temperature dependent birefringence data unveil that the frustrated transition order stems from intricate competition of short-range polar orders and their decoupling to long-range lattice deformation. With supports from effective Hamiltonian Monte Carlo simulations, our findings point out a potentially universal mechanism to comprehend the abnormal critical phenomena occurring in phase-transition materials.

4.
ACS Appl Mater Interfaces ; 12(23): 25930-25937, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32412230

RESUMEN

Industry has been seeking a thin-film capacitor that can work at high temperature in a harsh environment, where cooling systems are not desired. Up to now, the working temperature of the thin-film capacitor is still limited up to 200 °C. Herein, we design a multilayer structure with layers of paraferroelectric (Ba0.3Sr0.7TiO3, BST) and relaxor ferroelectric (0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3, BT-BMZ) to realize optimum properties with a flat platform of dielectric constant and high breakdown strength for excellent energy storage performance at high temperature. Through optimizing the multilayer structure, a highly stable relaxor ferroelectric state is obtained for the BST/BT-BMZ multilayer thin-film capacitor with a total thickness of 230 nm, a period number N = 8, and a layer thickness ratio of BST/BT-BMZ = 3/7. The optimized multilayer film shows significantly improved energy storage density (up to 30.64 J/cm3) and energy storage efficiency (over 70.93%) in an ultrawide temperature range from room temperature to 250 °C. Moreover, the multilayer system also exhibits excellent thermal stability in such an ultrawide temperature range with a change of 5.15 and 12.75% for the recoverable energy density and energy storage efficiency, respectively. Our results demonstrate that the designed thin-film capacitor is promising for the application in a harsh environment and open a way to tailor a thin-film capacitor toward higher working temperature with enhanced energy storage performance.

5.
ACS Nano ; 14(4): 4456-4462, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32275386

RESUMEN

Materials with layered crystal structures and high in-plane anisotropy, such as black phosphorus, present unique properties and thus promise for applications in electronic and photonic devices. Recently, the layered structures of GeS2 and GeSe2 were utilized for high-performance polarization-sensitive photodetection in the short wavelength region due to their high in-plane optical anisotropy and wide band gap. The highly complex, low-symmetric (monoclinic) crystal structures are at the origin of the high in-plane optical anisotropy, but the structural nature of the corresponding nanostructures remains to be fully understood. Here, we present an atomic-scale characterization of monoclinic GeS2 nanostructures and quantify the in-plane structural anisotropy at the sub-angstrom level in real space by Cs-corrected scanning transmission electron microscopy. We elucidate the origin of this high in-plane anisotropy in terms of ordered and disordered arrangement of [GeS4] tetrahedra in GeS2 monolayers, through density functional theory (DFT) calculations and orbital-based bonding analyses. We also demonstrate high in-plane mechanical, electronic, and optical anisotropies in monolayer GeS2 and envision phase transitions under uniaxial strain that could potentially be exploited for nonvolatile memory applications.

6.
Nano Lett ; 20(2): 1280-1285, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31904971

RESUMEN

Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings.

7.
Adv Mater ; 32(9): e1907208, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31975474

RESUMEN

Antiferroelectric-based dielectric capacitors are receiving tremendous attention for their outstanding energy-storage performance and extraordinary flexibility in collecting pulsed powers. Nevertheless, the in situ atomic-scale structural-evolution pathway, inherently coupling to the energy storage process, has not been elucidated for the ultimate mechanistic understanding so far. Here, time- and atomic-resolution structural phase evolution in antiferroelectric PbZrO3 during storage of energy from the electron-beam illumination is reported. By employing state-of-the-art negative-spherical-aberration imaging technique, the quantitative transmission electron microscopy study presented herein clarifies that the hierarchical evolution of polar oxygen octahedra associated with the unit-cell volume change and polarization rotation accounts for the stepwise antiferroelectric-to-ferroelectric phase transition. In particular, an unconventional ferroelectric category-the ferrodistortive phase characteristic of a unique cycloidal polarization order-is established during the dynamic structure investigation. Through clarifying the atomic-scale phase transformation pathway, findings of this work unveil a new territory to explore novel ferrodistortive phases in energy-storage materials with the nonpolar-to-polar phase transitions.

8.
ACS Appl Mater Interfaces ; 11(5): 5247-5255, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30640435

RESUMEN

As passive components in flexible electronics, the dielectric capacitors for energy storage are facing the challenges of flexibility and capability for integration and miniaturization. In this work, the all-inorganic flexible dielectric film capacitors have been obtained. The flexible capacitors show a desirable recoverable energy density ( Wrec) of 40.6 J/cm3 and a good energy efficiency (η) of 68.9%. Moreover, they have no obvious deterioration on both the Wrec and η after 104 times of mechanical bending cycles or under the bending state with a curvature radius of 4 mm. Besides, the outstanding stability of the capacitors against cycle fatigue over fast 106 charge-discharge cycles is demonstrated. Most importantly, they work properly at a wide temperature range from -120 to 150 °C with Wrec > 15 J/cm3 and η > 70%. These fascinating performances endow the flexible capacitors with huge potential application in the future "microenergy storage" system in flexible electronics.

9.
Faraday Discuss ; 213(0): 245-258, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30371713

RESUMEN

Recently, extended mixed dislocations were observed at a [001]/(100) low-angle tilt grain boundary of a SrTiO3 bicrystal because of a slight twist between the two crystal parts. The b = a[201]/(100) mixed dislocations at the grain boundary dissociate into three dislocations with Burgers vector b of a/2[101], a[100], and a/2[101], respectively. A structure model has been proposed in particular for the dislocation cores of the two partials with b = a/2[101] based on the high-angle annular dark-field (HAADF) images acquired by scanning transmission electron microscopy (STEM). However, the details of the atomic structure and the chemical composition of the dislocation cores remain unexplored, especially for the b = a[100] dislocation that is evidently disassociated into two b = a/2[101] partial dislocations. In this work, we study the further atomic details of the extended mixed dislocations, in particular the local chemistry, in a SrTiO3 bicrystal using STEM, electron energy loss spectroscopy (EELS), and energy dispersive X-ray (EDX) spectroscopy techniques. By these atomic-scale imaging techniques, we reveal a unique feature for the atomic structure of the b = a[201]/(100) extended mixed dislocation, which we named as local crystallographic shear (LCS) structures. In addition, we identify a rock salt FCC-type TiOx (x = 0.66-1.24) phase at the locations of the extended mixed dislocations. In contrast to the insulating TiO2 phases, the TiOx phase is known to exhibit very low electrical resistivity of only several µΩ cm. In this regard, the extended mixed dislocations of SrTiO3 comprising the FCC TiOx phase may function as the conducting filament in resistive switching processes by completion and disruption of the TiOx phase along the dislocation cores through electrically stimulated redox reactions.

10.
Adv Sci (Weinh) ; 5(12): 1800855, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30581700

RESUMEN

With the development of flexible electronics, the mechanical flexibility of functional materials is becoming one of the most important factors that needs to be considered in materials selection. Recently, flexible epitaxial nanoscale magnetic materials have attracted increasing attention for flexible spintronics. However, the knowledge of the bending coupled dynamic magnetic properties is poor when integrating the materials in flexible devices, which calls for further quantitative analysis. Herein, a series of epitaxial LiFe5O8 (LFO) nanostructures are produced as research models, whose dynamic magnetic properties are characterized by ferromagnetic resonance (FMR) measurements. LFO films with different crystalline orientations are discussed to determine the influence from magnetocrystalline anisotropy. Moreover, LFO nanopillar arrays are grown on flexible substrates to reveal the contribution from the nanoscale morphology. It reveals that the bending tunability of the FMR spectra highly depends on the demagnetization field energy of the sample, which is decided by the magnetism and the shape factor in the nanostructure. Following this result, LFO film with high bending tunability of microwave magnetic properties, and LFO nanopillar arrays with stable properties under bending are obtained. This work shows guiding significances for the design of future flexible tunable/stable microwave magnetic devices.

11.
ACS Appl Mater Interfaces ; 10(46): 39422-39427, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30394081

RESUMEN

Recent development in magnetic nanostructures has promoted flexible electronics into the application of integrated devices. However, the magnetic properties of flexible devices strongly depend on the bending states. In order to realize the design of new flexible devices driven by an external field, the first step is to make the magnetic properties insensitive to the bending. Herein, a series of LiFe5O8 nanopillar arrays were fabricated, whose microwave magnetic properties can be modulated by tuning the nanostructure. This work demonstrates that nanostructure engineering is useful to control the bending sensitivity of microwave magnetism and further design stable flexible devices.

12.
Ultramicroscopy ; 192: 57-68, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890501

RESUMEN

Pyrochlores characterized by the chemical formula A2B2O7 form an extended class of materials with interesting physical and chemical properties. The compound Bi1.5ZnNb1.5O7 is prototypical. Its excellent dielectric properties make it attractive, e.g. for capacitors, tunable microwave devices and electric-energy storage equipment. Bi1.5ZnNb1.5O7 shows an intriguing frequency-dispersive dielectric relaxation at 50 K ≤ T ≤ 250 K, which has been studied intensively but is still not fully understood. In this first study on a pyrochlore by atomic-resolution transmission electron microscopy we observe the Bi atoms on A sites since, due to their low nuclear charge, the contribution of Zn atoms to the contrast of these sites is negligible. We find in our [1¯00]and [112] oriented images that the position of the atomic intensity maxima do not coincide with the projected Wyckoff positions of the basic pyrochlore lattice. This supplies atomic-scale evidence for displacive disorder on split A-type sites. The Bi atoms are sessile, only occasionally we observe in time sequences of images jumps between individual split-site positions. The apertaining jump rate of the order of 0.1-1 Hz is by ten orders of magnitude lower than the values derived in the literature from Arrhenius plots of the low-temperature dielectric relaxation data. It is argued that these jumps are radiation induced. Therefore our observations are ruling out a contribution of Bi-atom jumps to low-temperature dielectric A sites-related relaxation. It is suggested that this relaxation is mediated by jumps of Zn atoms.

13.
Adv Mater ; : e1800957, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29882270

RESUMEN

Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric-field-driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2 /H218 O tracer gas atmosphere combined with time-of-flight secondary-ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3 -based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.

14.
Phys Rev Lett ; 120(17): 177601, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29756809

RESUMEN

Distinct and novel features of nanometric electric topological defects, including dipole waves and dipole disclinations, are presently revealed in the PbTiO_{3} layers of PbTiO_{3}/SrTiO_{3} multilayer films by means of quantitative high-resolution scanning transmission electron microscopy. These original dipole configurations are confirmed and explained by atomistic simulations and have the potential to act as functional elements in future electronics.

15.
ACS Appl Mater Interfaces ; 10(1): 1428-1433, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29250959

RESUMEN

Epitaxial Pr0.5Sr0.5CoO3 thin films have been grown on single-crystalline (La0.289Sr0.712)(Al0.633Ta0.356)O3(001) substrates by the pulsed laser deposition technique. The magnetic properties and microstructure of these films are investigated. It is found that Ruddlesden-Popper faults (RP faults) can be introduced in the films by changing the laser repetition rate. The segregation of Pr at the RP faults is characterized by atomic-resolution chemical mapping. The formation of the RP faults not only contributes to the epitaxial strain relaxation but also significantly decreases the ferromagnetic long-range order of the films, resulting in lower magnetizations than those of the fault-free films. Our results provide a strategy for tuning the magnetic properties of cobalt-based perovskite films by modifying the microstructure through the film growth process.

16.
Adv Mater ; 29(33)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28639318

RESUMEN

Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe5 O8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe5 O8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics.

17.
ACS Nano ; 11(8): 8002-8009, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28657728

RESUMEN

Epitaxial thin films of CoFe2O4 (CFO) have successfully been transferred from a SrTiO3 substrate onto a flexible polyimide substrate. By bending the flexible polyimide, different levels of uniaxial strain are continuously introduced into the CFO epitaxial thin films. Unlike traditional epitaxial strain induced by substrates, the strain from bending will not suffer from critical thickness limitation, crystalline quality variation, and substrate clamping, and more importantly, it provides a more intrinsic and reliable way to study strain-controlled behaviors in functional oxide systems. It is found that both the saturation magnetization and coercivity of the transferred films can be changed over the bending status and show a high accord with the movement of the curvature bending radius of the polyimide substrate. This reveals that the mechanical strain plays a critical role in tuning the magnetic properties of CFO thin films parallel and perpendicular to the film plane direction.

18.
ACS Appl Mater Interfaces ; 9(20): 17096-17101, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28471645

RESUMEN

A large energy storage density (ESD) of 30.4 J/cm3 and high energy efficiency of 81.7% under an electrical field of 3 MV/cm was achieved at room temperature by the fabrication of environmentally friendly lead-free BaZr0.2Ti0.8O3 epitaxial thin films on Nb-doped SrTiO3 (001) substrates by using a radio-frequency magnetron sputtering system. Moreover, the BZT film capacitors exhibit great thermal stability of the ESD from 16.8 J/cm3 to 14.0 J/cm3 with efficiency of beyond 67.4% and high fatigue endurance (up to 106 cycles) in a wide temperature range from room temperature to 125 °C. Compared to other BaTiO3-based energy storage capacitor materials and even Pb-based systems, BaZr0.2Ti0.8O3 thin film capacitors show either high ESD or great energy efficiency. All of these excellent results revealed that the BaZr0.2Ti0.8O3 film capacitors have huge potential in the application of modern electronics, such as locomotive and pulse power, in harsh working environments.

19.
Sci Rep ; 7(1): 713, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386075

RESUMEN

Pavlovian conditioning, a classical case of associative learning in a biological brain, is demonstrated using the Ni/Nb-SrTiO3/Ti memristive device with intrinsic forgetting properties in the framework of the asymmetric spike-timing-dependent plasticity of synapses. Three basic features of the Pavlovian conditioning, namely, acquisition, extinction and recovery, are implemented in detail. The effects of the temporal relation between conditioned and unconditioned stimuli as well as the time interval between individual training trials on the Pavlovian conditioning are investigated. The resulting change of the response strength, the number of training trials necessary for acquisition and the number of extinction trials are illustrated. This work clearly demonstrates the hardware implementation of the brain function of the associative learning.


Asunto(s)
Aprendizaje por Asociación , Encéfalo/fisiología , Condicionamiento Clásico , Electrónica/instrumentación , Electrónica/métodos , Modelos Teóricos
20.
ACS Appl Mater Interfaces ; 9(12): 10888-10896, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28262026

RESUMEN

Electron mobility is one of the most-debated key attributes of low-dimensional electron systems emerging at complex oxide heterointerfaces. However, a common understanding of how electron mobility can be optimized in these systems has not been achieved so far. Here, we discuss a novel approach for achieving a systematic increase in electron mobility in polar/nonpolar perovskite interfaces by suppressing the thermodynamically required defect formation at the nanoscale. We discuss the transport properties of electron gases established at interfaces between SrTiO3 and various polar perovskites [LaAlO3, NdGaO3, and (La,Sr)(Al,Ta)O3], allowing for the individual variation of epitaxial strain and charge transfer among these epitaxial interfaces. As we show, the reduced charge transfer at (La,Sr)(Al,Ta)O3/SrTiO3 interfaces yields a systematic increase in electron mobility, while the reduced epitaxial strain has only minor impact. As thermodynamic continuum simulations suggest, the charge transfer across these interfaces affects both the spatial distribution of electrons and the background distribution of ionic defects, acting as major scatter centers within the potential well. Easing charge transfer in (La,Sr)(Al,Ta)O3/SrTiO3 yields an enlarged spatial separation of mobile charge carriers and scattering centers, as well as a reduced driving force for the formation of ionic defects at the nanoscale. Our results suggest a general recipe for achieving electron enhancements at oxide heterostructure interfaces and provide new perspectives for atomistic understanding of electron scattering in these systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...